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ABSTRACT

This paper presents the development of a static estimator for obtaining state information from optic flow and
radar measurements. It is shown that estimates of translational and rotational speed can be extracted using a
least squares inversion. The approach is demonstrated in a simulated three dimensional urban environment on an
autonomous quadrotor micro-air-vehicle (MAV). The resulting methodology has the advantages of computation
speed and simplicity, both of which are imperative for implementation on MAVs due to stringent size, weight,
and power requirements.
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1. INTRODUCTION

Unmanned air vehicles (UAVs) are a well established class of aircraft which have been in use for several decades.
UAVs carry a variety of sensors capable of determining the vehicles’ pose and velocity to enable a level of
autonomy which includes stability control, trajectory tracking, and GPS-based waypoint navigation. However,
these vehicles are designed for missions at high altitudes and are thus unable to navigate unmapped obstacles
such as buildings, trees, or telephone wires. In recent years, an emphasis has been placed on the development
of micro air vehicles (MAVs), a miniaturized class of UAVs whose mission profiles typically include navigating
close to the ground in unmapped, cluttered outdoor or indoor environments. These vehicles require more precise
sensing and control than typical UAVs to safely navigate the cluttered environments. The ability for a vehicle
to autonomously estimate egomotion and proximity to obstacles is considered an advanced capability, even for
large vehicles. MAVs are very small platforms, typically on the order of several hundered grams or less, so they
are limited to carrying small, low weight sensors with low power and processing requirements, thus severely
restricting the type of sensors and control algorithms which can be implemented onboard. As a result, the
investigation of novel sensing techniques is necessary to advance MAV technology.

Naturally, vision is an appealing technique for providing a thorough knowledge of an environment. Several
machine vision approaches have been investigated,1−3 but many of these techniques prove to be computationally
expensive and physically cumbersome, adding significant weight. However, one visual based method for detecting
speed and proximity to obstacles which has proven to be viable for implementation on MAVs is optic flow.
Derived from the visual perception of flying insects, optic flow is the characteristic patterns of visual motion
which form on the retinas of insects as they move about an environment. These patterns are a function of
relative speed and relative proximity of the insect to obstacles in the surroundings. Many studies have been
conducted which investigate the use of optic flow in MAV navigation.4−8 These studies typically use optic flow
for obstacle avoidance7,8 or state estimation with the additional requirement of sensors such as GPS or IMUs.5

Alternatively, wide field integration (WFI) of optic flow has been proven to be an effective method for obstacle
avoidance and state estimation,4,6,9 but requires the derivation of weighting patterns based on an assumed
environment structure.

The work presented here proposes an alternative method for state estimation from optic flow without the use
of WFI or GPS/IMU sensors. As a function of relative speed and proximity, optic flow estimates can be merged
with proximity measurements in order to extract more accurate knowledge of velocity. Consequently, introducing
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an accurate distance measurement sensor, such as radar, to a vehicle can provide proximity information which
can be incorporated with optic flow measurements to obtain better speed estimates. Thus, not only is accurate
knowledge of the environment obtained through optic flow and radar measurements, but accurate translational
and rotational velocity information can be acquired without the use of additional sensors such as GPS or IMUs.
This paper investigates a method for static estimation of translational and angular velocity of a MAV flying
through a cluttered environment. A 3-D simulator developed by the Autonomous Vehicle Laboratory at the
University of Maryland is utilized to test the state estimation methods presented in this paper on a quadrotor
robotic platform.

This paper is organized as follows. In Section 2, a discussion of optic flow is provided and a mathematical
model is presented. Section 3 derives a static estimation method for estimating translational and rotational
velocity of an MAV using the optic flow model presented in Section 2, along with measurements taken by radar
sensors. Section 4 validates the static estimation scheme using a simulation of a 6 degree of freedom (6-DOF)
quadrotor MAV. Finally the results are discussed in Section 5, drawing the conclusion that the method of static
estimation presented in this work is adequate for determining a vehicles’ velocity and could be used for feedback
control.

2. OPTIC FLOW MODEL

This section provides a background on optic flow sensing. The theory associated with optic flow is discussed and
mathematical models are presented.

2.1 Optic Flow

Optic flow is the apparent visual motion experienced by an observer when moving through an imaged environ-
ment. True optic flow is the vector field describing the relative velocities of points within the projected image
over the viewing surface, e.g. the retina of an insect. This velocity field is defined by the translational and
rotational motion, as well as the relative proximity of the observer to objects in the surrounding environment.
The optic flow pattern Q̇ on a spherical surface can be expressed mathematically as

Q̇ = 𝝎 × r+ 𝜇[v − ⟨v, r⟩r] (1)

where 𝝎 = [𝑝, 𝑞, 𝑟]T is the angular velocity, v = [𝑢, 𝑣, 𝑤]T is the translational velocity of the vantage point, and
𝜇 is the nearness function, which represents the distribution of objects in the surrounding environment. The
nearness function is defined as the inverse of the distance from the observer to an object in the environment at a
particular viewing angle of azimuth 𝛾 ∈ [0, 2𝜋] and elevation 𝛽 ∈ [0, 𝜋], thus 𝜇(𝛾, 𝛽) = 1

𝑑(𝛾,𝛽) . Figure 1 illustrates

the optic flow pattern from Eqn (1) can be broken down into components of azimuth and elevation:

Q̇ = 𝑄̇𝛾 ê𝛾 + 𝑄̇𝛽 ê𝛽 (2)

Figure 1. Geometry for spherical optic flow.
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where

𝑄̇𝛾 = 𝑝 cos𝛽 cos 𝛾 + 𝑞 cos𝛽 sin 𝛾 − 𝑟 sin𝛽 + 𝜇(𝑢 sin 𝛾 − 𝑣 cos 𝛾)

𝑄̇𝛽 = 𝑝 sin 𝛾 − 𝑞 cos 𝛾 + 𝜇(−𝑢 cos𝛽 cos 𝛾 − 𝑣 cos𝛽 sin 𝛾 + 𝑤 sin𝛽). (3)

In robotic applications, optic flow is measured as either 1-D flow (either 𝑄̇𝛾 or 𝑄̇𝛽) or 2-D flow (both 𝑄̇𝛾 and
𝑄̇𝛽). In the work presented in this research, 2-D optic flow is assumed.

3. OPTIMAL STATIC ESTIMATION OF RELATIVE STATES

Optic flow cannot be measured directly; rather, the value Q̇ is an estimate of optic flow which is dependent on
the luminance incident on the imaging surface. This estimation process, along with sensor noise and contrast and
texture variations throughout the surfaces in the environment, introduce error into the optic flow measurements.
In addition, the radar proximity measurements are also corrupted by several sources of noise. In this section,
a method of static estimation for determining translational and rotational velocity from noisy measurements is
presented.

3.1 Measurement Model

The combined effect of the various uncertainties have been modeled in10,11 as zero mean white Gaussian noise.
Thus the optic flow measurement is expressed as

˙̃Q = Q̇+ 𝝂, (4)

where ˙̃Q is the optic flow measurement, and 𝝂 is assumed to be zero mean, white, and uncorrelated with itself
at different viewing angles. The radar distance measurements, too, are corrupted by noise, thus,

𝝁̃ = 𝝁+ n. (5)

where 𝝁̃ is the nearness measurement, and n is also assumed to be zero mean, white, and uncorrelated with itself
at different viewing angles. The observation equation is then obtained from Eqns. (3), (4) and (5). If 𝑘 discrete
optic flow and radar measurements are taken on the sphere, the observation equations are then written as

˙̃𝑄𝛾
1 = 𝑝 cos𝛽1 cos 𝛾1 + 𝑞 cos𝛽1 sin 𝛾1 − 𝑟 sin𝛽1 + (𝜇1 + 𝑛1)(𝑢 sin 𝛾1 − 𝑣 cos 𝛾1) + 𝜈1

˙̃𝑄𝛾
2 = 𝑝 cos𝛽2 cos 𝛾2 + 𝑞 cos𝛽2 sin 𝛾2 − 𝑟 sin𝛽2 + (𝜇2 + 𝑛2)(𝑢 sin 𝛾2 − 𝑣 cos 𝛾2) + 𝜈2

...

˙̃𝑄𝛾
𝑘 = 𝑝 cos𝛽𝑘 cos 𝛾𝑘 + 𝑞 cos𝛽𝑘 sin 𝛾𝑘 − 𝑟 sin𝛽𝑘 + (𝜇𝑘 + 𝑛𝑘)(𝑢 sin 𝛾𝑘 − 𝑣 cos 𝛾𝑘) + 𝜈𝑘

˙̃𝑄𝛽
1 = 𝑝 sin 𝛾1 − 𝑞 cos 𝛾1 + (𝜇1 + 𝑛1)(−𝑢 cos𝛽1 cos 𝛾1 − 𝑣 cos𝛽1 sin 𝛾1 + 𝑤 sin𝛽1) + 𝜈1

˙̃𝑄𝛽
2 = 𝑝 sin 𝛾2 − 𝑞 cos 𝛾2 + (𝜇2 + 𝑛2)(−𝑢 cos𝛽2 cos 𝛾2 − 𝑣 cos𝛽2 sin 𝛾2 + 𝑤 sin𝛽2) + 𝜈2

...

˙̃𝑄𝛽
𝑘 = 𝑝 sin 𝛾𝑘 − 𝑞 cos 𝛾𝑘 + (𝜇𝑘 + 𝑛𝑘)(−𝑢 cos𝛽𝑘 cos 𝛾𝑘 − 𝑣 cos𝛽𝑘 sin 𝛾𝑘 + 𝑤 sin𝛽𝑘) + 𝜈𝑘. (6)

By allowing 𝑒1,𝑗 = 𝜈𝑗+𝑛𝑗(𝑢 sin 𝛾𝑗−𝑣 cos 𝛾𝑗) for 𝑗 = 1, 2, . . . , 𝑘 and 𝑒2,𝑗 = 𝜈𝑗+𝑛𝑗(−𝑢 cos𝛽𝑗 cos 𝛾𝑗−𝑣 cos𝛽𝑗 sin 𝛾𝑗+
𝑤 sin𝛽𝑗) for 𝑗 = 1, 2, . . . , 𝑘, Eqn. (6) can take the form of the linear measurement equation

z = 𝐻x+ e, (7)
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where z is the 2𝑘 × 1 vector of optic flow measurements z = [ ˙̃𝑄𝛾
1 ,
˙̃𝑄𝛾
2 , . . . ,

˙̃𝑄𝛾
𝑘 ,
˙̃𝑄𝛽
1 ,
˙̃𝑄𝛽
2 , . . . ,

˙̃𝑄𝛽
𝑘 ]

T, x is the 6 × 1
vector of angular and translational velocities x = [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟]T, e is the 2𝑘 × 1 error vector e = [e1, e2]T, and
𝐻 is the 2𝑘 × 6 matrix given by

𝐻 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜇1 sin 𝛾1 −𝜇1 cos 𝛾1 0 cos𝛽1 cos 𝛾1 cos𝛽1 sin 𝛾1 sin𝛽1

𝜇2 sin 𝛾2 −𝜇2 cos 𝛾2 0 cos𝛽2 cos 𝛾2 cos𝛽2 sin 𝛾2 sin𝛽2

...
...

...
...

...
...

𝜇𝑘 sin 𝛾𝑘 −𝜇𝑘 cos 𝛾𝑘 0 cos𝛽𝑘 cos 𝛾𝑘 cos𝛽𝑘 sin 𝛾𝑘 sin𝛽𝑘

−𝜇1 cos𝛽1 cos 𝛾1 −𝜇1 cos𝛽1 sin 𝛾1 𝜇1 sin𝛽1 sin 𝛾1 − cos 𝛾1 0
−𝜇2 cos𝛽2 cos 𝛾2 −𝜇2 cos𝛽2 sin 𝛾2 𝜇2 sin𝛽2 sin 𝛾2 − cos 𝛾2 0

...
...

...
...

...
...

−𝜇𝑘 cos𝛽𝑘 cos 𝛾𝑘 −𝜇𝑘 cos𝛽𝑘 sin 𝛾𝑘 𝜇𝑘 sin𝛽𝑘 sin 𝛾𝑘 − cos 𝛾𝑘 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

3.2 Least Squares Inversion

When written as Eqn. (7) the problem posed in the form of a standard static linear estimation problem, in
which the solution of an overdetermined, inconsistent set of linear equations is sought. Gauss’s principle of least
squares solves for x̂, the estimate of x which minimizes the sum of the square of the residual errors. Thus, the
goal of the least squares method is to solve for x̂ by minimizing the cost function 𝐽 = 1

2e
Te. Substituting (7)

for e into the equation for 𝐽 , yields

𝐽 = 𝐽(x̂) =
1

2
(ỹTỹ − 2ỹT𝐻x̂+ x̂T𝐻T𝐻x̂) (9)

To minimize 𝐽 with respect to x̂, the partial derivative is found and set equal to zero:

𝑑𝐽

𝑑x̂
= −ỹT𝐻 + x̂T𝐻T𝐻 (10)

= 0.

Solving this equation for x̂ results in

𝐻T𝐻x̂ = 𝐻Tỹ

x̂ = (𝐻T𝐻)−1𝐻Tỹ. (11)

As long as the number of measurements 𝑘 is greater than the number of unknown states 𝑛, and the measurements
are linearly independent, i.e. 𝐻 is full rank, Eqn. (11) provides the optimal static estimates for translational
and angular velocities x̂ = [𝑢̂, 𝑣, 𝑤̂, 𝑝, 𝑞, 𝑟]T.

4. SIMULATION

The estimation methods presented in Section 3 are applied to simulations of a quadrotor vehicle flying through
an urban environment, replicating the flight of an autonomous reconnaissance vehicle. This section presents the
methodology and results obtained from simulation.

4.1 Methodology

The Autonomous Vehicle Laboratory at the University of Maryland developed an in-house simulation environ-
ment which provides visualization capabilities as well as the ability to compute optic flow from simulated cameras
on robotic platforms. Figure 2 depicts scenes from the 3-D simulation environment. The vehicle selected for
simulation is an X-UFO Quadrotor MAV made by Ascending Technologies GmbH. The quadrotor, shown in
Figure 3, has an overall diameter of 40 cm, an overall mass of 505 g, and rotor diameter of 20 cm. A linearized
flight dynamics model was obtained by Gremillion.12 The kinematics and dynamics are linearized about forward
flight with 𝑢𝑟𝑒𝑓 = 1 m/s, and are presented in Appendix A. The full nonlinear kinematic equations are used for
simulation.
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Figure 2. 3-D simulation environment.

For optic flow estimation, the virtual MAV is equipped with six cameras, each with a 90 × 90 deg field
of view and a resolution of 128 × 128 pixels. The optic flow cameras cover the six sides of a cube, such that
the full spherical viewing arena is imaged. However, for this work, optic flow is only measured on the bottom
hemisphere, ie 0 ≤ 𝛽 ≤ 𝜋

2 . In processing the images captured by the optic flow cameras, the imagery is first
passed through a Gaussian blurring function to mitigate aliasing issues. A resolution iterative implementation
of the Lucas-Kanade algorithm at 60 fps is implemented to calculate optic flow. During flight, 400 image points
with constant angular spacing along the lower hemisphere of the uv-coordinate spherical grid are tracked. These
points are mapped from a virtual sphere surface to the flat cameras via geometric projection. The objects in
the simulated environment, including walls, rooftops, the ground and sky, are textured with imagery of sufficient
visual contrast so that optic flow can be computed. The optic flow measurements are desampled from 400 to 100
by unweighted averaging of square groups of four adjacent nodes. To reduce noise, outlier measurements with a
high final cost function or infeasibly large shift estimates are ignored in the block average.9

The Radiation Lab at the University of Michigan is currently developing radar sensors suitable for use on
MAV platforms. The radar being developed at Michigan is a 215 GHz electronically-scanned radar with a
horizontal field of view of 50 degrees, with 2-degree resolution, and a vertical field of view of 30 degrees. The
range resolution is 25 cm, which is determined by the chirp bandwidth of the system, while the range of the
system is approximately 200 meters, given the noise levels chosen.

In this simulation, radar measurements are simulated through distance measurements taken from the vehicle.

Figure 3. Actual quadrotor vs simulated quadrotor.
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Figure 4. Quadrotor trajectories through simulated environment.

These distance measurements are individually given random, range dependent error to simulate noise in the
radar sensors. For this work, 100 radar measurements are taken, corresponding to the desampled 100 optic flow
measurements. Therefore, this work assumes radar sensors on the vehicle provide a 360∘ by 180∘ view spanning
the bottom hemisphere of the vehicle. Based on the radar sensors in development at Michigan, this setup is
slightly impractical for real-world implementation. However, the ultimate goal of the work presented here is to
determine the feasibility of combining optic flow and radar for state estimation. Thus, the assumed setup is
sufficient for this simulation.

4.2 Results

Figure 4 shows several of the trajectories the quadrotor followed through the simulated Fort Benning environment.
The vehicle not only navigates between buildings, it also maneuvers over short obstacles, up to 1 meter high,
simulating various terrain changes a reconnaissance vehicle could encounter. Figure 5 shows a sample of the
results obtained during Run 1 when using the static estimation method presented in Section 3 to approximate
the translational and rotational velocity of the simulated quadrotor. The results shown in this plot represent the
vehicle turning away from a wall and approaching a 0.5 m tall obstacle. It is important to note that the control
scheme implemented on the quadrotor during simulation not only attempts to maintain a constant forward
velocity, 𝑢𝑟𝑒𝑓 = 1 m/s, but also maintain a constant height above the terrain of 𝑧 = 1 m. Thus, when the
vehicle approaches terrain changes, the heave velocity 𝑤 and pitch rate 𝑞 are affected, which explains the high
frequency content observed in the heave velocity. Since the forward and lateral velocities experience slow, low
frequency deviations from trim, the estimated velocities 𝑢̂ and 𝑣 are passed through a low pass filter to reduce
high frequency content and smooth the data. The other states experience both high and low frequency deviations
from trim, and thus cannot be filtered easily without greatly affecting the quality of the estimates.

One metric used to determine how well the estimated states match the actual values is the root-mean-square
(RMS) error. The RMS error between each state, generically denoted 𝑥, is given by3

𝑒𝑅𝑀𝑆 =

√∑𝑁
𝑖=1(𝑥̂𝑖 − 𝑥𝑖)2

𝑁
, (12)
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Figure 5. Estimated vs actual speeds and rates of quadrotor navigating urban environment.

where 𝑥̂𝑖 is the state estimate and 𝑥𝑖 is the true state at each time 𝑡𝑖, and 𝑁 is the total number of samples
collected. Table 1 presents the RMS errors for the estimated values of x for the data collected in the four
trajectories shown in Figure 4.

5. DISCUSSION

Figure 5 and Table 1 both demonstrate that the estimated velocities fit the true values well. While all the
states are estimated satisfactorily, particular interest is taken in how well the estimates for 𝑢̂ and 𝑣 match the
true values. Traditionally, these translational velocities are difficult to measure on MAVs. Thus, the results not
only validate this method of state estimation, but also demonstrate that it has great potential for use on MAV
platforms. Table 1 also asserts that from the data collected in Run 1, the heave velocity has a larger RMS error
than the other velocity estimates. In this run of the simulation, the vehicle approaches and traverses over a 0.5
m tall box shaped obstacle. As noted in the previous section, such a motion causes the vehicle to experience
considerable heave motion as it regulates its height to safely travel over the obstacle. Thus, higher frequency

Table 1. RMS error for estimated states

State Run 1 Run 2 Run 3 Run 4

𝑢 (m/s) 0.0787 0.0413 0.0687 0.0301
𝑣 (m/s) 0.0225 0.0151 0.0096 0.0157
𝑤 (m/s) 0.1662 0.0926 0.0896 0.0998
𝑝 (rad/s) 0.0812 0.0955 0.0671 0.0556
𝑞 (rad/s) 0.0425 0.029 0.0295 0.0258
𝑟 (rad/s) 0.0379 0.0336 0.0372 0.0271
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oscillations are experienced through this section of the run. Upon closer inspection of the data, it is observed
that during high frequency heave motions, the least squares estimator is able to capture the frequency well, but
often does not capture the amplitude of this content as well, resulting in the larger error.

6. CONCLUSIONS

This paper demonstrates that optic flow sensing techniques can be combined with radar sensors to obtain
estimates for translational and rotational velocities of a 6 DOF micro air vehicle. A method of least squares static
estimation was derived using a mathematical model of 2-D optic flow to generate velocity approximations. The
estimation scheme was applied to a simulation of a 6 DOF quadrotor vehicle navigating an urban environment.
The results presented illustrated the viability of this estimation scheme by demonstrating an excellent fit to
the true velocity values. The benefits of using the combination of optic flow and radar include the ability to
obtain 1) accurate distance information from radar measurements and 2) accurate rate estimates from a simple
static estimation scheme. The data collected from the combination of these sensors can allow for good obstacle
detection for avoidance maneuvers as well as for velocity regulation and vehicle stabilization. Feedback control
with the use of an infinite horizon linear quadratic regulation (LQR) control scheme using the state estimates
obtained through the methods presented here will be investigated in future work.

APPENDIX A. QUADROTOR DYNAMICS

The dynamics equations of motion are given by

𝑢̇ = 𝑋𝑢𝑢+𝑋𝜃𝜃

𝑣̇ = 𝑌𝑣𝑣 − 𝑢𝑟𝑒𝑓𝑟 + 𝑌𝜙𝜙

𝑤̇ = 𝑍𝑤𝑤 + 𝑢𝑟𝑒𝑓𝑞 + 𝑍𝑡ℎ𝑟𝛿𝑡ℎ𝑟

𝑝̇ = 𝐿𝑝𝑝+ 𝐿𝜙𝜙+ 𝐿𝑙𝑎𝑡𝛿𝑙𝑎𝑡

𝑞 =𝑀𝑞𝑞 +𝑀𝜃𝜃 +𝑀𝑙𝑜𝑛𝛿𝑙𝑜𝑛 (13)

𝑟̇ = 𝑁𝑟𝑟 +𝑁𝑦𝑎𝑤𝛿𝑦𝑎𝑤

𝜙̇ = Φ𝑝𝑝+Φ𝑙𝑎𝑡𝛿𝑙𝑎𝑡

𝜃 = Θ𝑞𝑞 +Θ𝑙𝑜𝑛𝛿𝑙𝑜𝑛

𝜓̇ = Ψ𝑟𝑟 +Ψ𝑦𝑎𝑤𝛿𝑦𝑎𝑤

The actuator saturation limits are: ∣𝛿𝑙𝑎𝑡∣ ≤ 1, ∣𝛿𝑙𝑜𝑛∣ ≤ 1, ∣𝛿𝑦𝑎𝑤∣ ≤ 1, ∣𝛿𝑡ℎ𝑟∣ ≤ 1. The characteristic stability
derivatives are defined in Table 2.

Table 2. Quadrotor Parameter Values

Parameter Value Parameter Value

𝑋𝑢 -0.27996 Φ𝑝 0.9655
𝑌𝑣 -0.22566 Θ𝑞 0.9634
𝑍𝑤 -1.2991 Ψ𝑟 0.6748
𝐿𝑝 -2.5110 𝑍𝑡ℎ𝑟 -39.282
𝑀𝑞 -2.4467 𝐿𝑙𝑎𝑡 11.468
𝑁𝑟 -0.4948 𝑀𝑙𝑜𝑛 9.5711
𝑋𝜃 -10.067 𝑁𝑦𝑎𝑤 3.5647
𝑌𝜙 9.8648 Φ𝑙𝑎𝑡 0.0744
𝐿𝜙 -21.358 Θ𝑙𝑜𝑛 0.0594
𝑀𝜃 -18.664 Ψ𝑦𝑎𝑤 0.0397
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